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Abstract

This study applies a comprehensive multivariate statistical framework to monitor
and predict product quality in a manufacturing process. Using data from 400
production observations, the analysis integrates descriptive statistics, correlation
assessment, Principal Component Analysis (PCA), Hotelling’s T2 control charting,
and logistic regression modeling. PCA effectively reduced data dimensionality,
revealing key latent factors explaining over half of total process wariance.
Hotelling’s T? analysis identified multivariate outliers, indicating occasional
deviations from normal operating conditions. The logistic regression classifier
demonstrated moderate accuracy but limited sensitivity, highlighting the trade-off
between model interpretability and defect detection capability. Owerall, the
integrated framework enhances understanding of process variability, supports early
fault detection, and strengthens data-driven decisionmaking in industrial quality
control. The study underscores the value of combining traditional multivariate
statistics with predictive analytics for intelligent manufacturing and continuous
process improvement.

INTRODUCTION

Ensuring consistent product quality in modern
manufacturing environments is a central challenge of
industrial engineering. As production systems
become increasingly complex and data-driven, the
need for robust statistical frameworks capable of
handling multiple interdependent variables has
intensified. = Traditional = quality = monitoring
approaches Shewhart’s control charts
developed in the early twentieth century nwere

such as

originally designed for single-variable monitoring and
thus remain limited in scope when applied to
multidimensional processes (Montgomery, 2020). In
real-world production systems, process variables such
as temperature, pressure, viscosity, and humidity
interact simultaneously, meaning that variations
rarely occur in isolation. Univariate methods, by
analyzing each parameter independently,
therefore overlook correlated shifts that collectively

can
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signal underlying process disturbances or potential
quality degradation. To overcome these limitations,
Multivariate Statistical Process Control (MSPC)
techniques have been developed as a comprehensive
approach for analyzing and monitoring correlated
process data. The conceptual foundation of MSPC
was laid by Hotelling (1947) through the
introduction of the Hotelling’s T? statistic, which
generalized the Shewhart chart to a multivariate
context. By incorporating the covariance structure
among variables, the T? statistic provides a holistic
measure of process deviation, enabling the detection
of subtle, multidimensional shifts that might not be
evident when each variable is monitored separately.
This advancement marked a paradigm shift in
quality control, transitioning from independent
parameter analysis to system-wide statistical
supetrvision. Subsequent  developments in
multivariate statistics led to the integration of
Principal Component Analysis (PCA) as a powerful
dimensionality reduction and pattern recognition
tool. PCA decomposes correlated process variables
into orthogonal principal components that
summarize the majority of the variance using fewer
dimensions (Jackson, 2003). This technique became
a cornerstone of process monitoring after the
seminal contributions of Nomikos and MacGregor
(1995) and Kourti and MacGregor (1996), who
demonstrated the use of PCA-based control charts to
efficiently identify abnormal operating conditions
and distinguish between systematic and random
sources of variation. The combination of PCA with
Hotelling’s T? and Q (squared prediction error)
statistics has since become standard in modern
industrial analytics, allowing practitioners to visualize
process structure while maintaining rigorous
statistical control.

Further refinements of PCA have been introduced to
address nonlinear and dynamic industrial processes.
Techniques such as Dynamic PCA (DPCA) (Ku et
al., 1995) and Kernel PCA (KPCA) (Lee et al., 2004)
extend classical PCA by capturing temporal
correlations and nonlinear relationships, making
them suitable for continuous processes in sectors like
chemical manufacturing and  semiconductor
production. These developments underscore the
increasing sophistication of multivariate methods,
evolving from simple linear decompositions to

adaptive, data-driven representations of complex
process behavior. Alongside PCA, other multivariate
methodologies have also been employed for process
monitoring and quality prediction. Partial Least
Squares (PLS) regression is particularly valuable
when both predictor and response variables are
correlated, as it extracts latent factors that explain
covariance between input and output spaces (Wold
et al., 2001). Likewise, Independent Component
Analysis (ICA) has been adopted to isolate
statistically independent sources of variability,
providing advantages in detecting non-Gaussian
process disturbances (Lee &  Choi, 2004).
Comparative studies show that PCA is more suited
for exploratory analysis and monitoring, while PLS
and ICA offer stronger predictive capabilities,
depending on the process characteristics. In recent
decades, the fusion of machine learning and
multivariate statistics has driven significant progress
in quality analytics. Researchers such as Qin (2012)
and Zhang et al. (2018) have demonstrated that
combining traditional statistical frameworks like
PCA or PLS with classifiers such as Support Vector
Machines (SVM), Random Forests (RF), or Artificial
Neural Networks (ANNSs) vyields superior fault
detection accuracy. These hybrid models capture
nonlinear, high-dimensional relationships that
conventional linear methods may fail to identify.
However, despite these advances, purely statistical
models remain essential due to their interpretability,
mathematical rigor, and ease of implementation in
industrial environments where transparency and
explainability are paramount. Within this context,
Hotelling’s T2 control chart continues to be one of
the most widely used multivariate monitoring tools.
It quantifies the squared Mahalanobis distance
between each observation and the multivariate mean,
effectively measuring how far a sample deviates from
the normal operating condition. This approach is
particularly sensitive to joint variable shifts, even
when individual deviations are small (Mason &
Young, 2002). Modern adaptations include adaptive
T2 charts with time-varying control limits to improve
responsiveness under non-stationary conditions
(Tucker et al., 2010). When used in conjunction
with  PCA, T? monitoring provides both
dimensionality reduction and enhanced sensitivity,
ensuring that outliers and process anomalies are
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promptly detected. Parallel to these advancements in
monitoring, predictive modeling has become a core
component of contemporary quality control. Logistic
regression, one of the most interpretable predictive
models, is often employed to «classify product
outcomes (conforming or nonconforming) based on
process variables (Hosmer et al.,, 2013). It estimates
the probability of defect occurrence and allows for
quantifying the influence of each process variable on
the likelihood of producing an out-ofspec product.
Nevertheless, logistic regression’s performance can be
limited by linearity assumptions and class imbalance,
which are common in industrial datasets (Zhang &
Chiang, 2014). This challenge has motivated
researchers to combine logistic regression with
multivariate statistical methods, such as PCA or T2
analysis, to enhance both accuracy and
interpretability in predictive quality analytics. The
rise of Industry 4.0 and the Industrial Internet of
Things (IloT) has further expanded the relevance of
multivariate statistical techniques. With continuous
data collection from networked sensors, process
monitoring now extends beyond retrospective quality
assessment to real-time predictive maintenance and
adaptive control (Tao et al., 2018). Integrating PCA,
T? charts, and logistic regression within smart
manufacturing systems allows for immediate fault
detection, dynamic adjustment of  process
parameters, and data-driven  decision-making.
Empirical studies by Jiang et al. (2020) and Lee et al.
(2021) confirm that embedding MSPC frameworks
into IloT architectures significantly enhances
production efficiency, reduces downtime, and
improves overall product reliability. Despite
substantial progress, several gaps remain in the
literature. First, while numerous studies explore
algorithmic developments, relatively few examine
comparative performance across integrated statistical
frameworks applied to real industrial data. Second,
research often focuses on either process monitoring
(using PCA or T?) or predictive modeling (using
logistic regression), with limited attention to how
these methods can be jointly applied for
simultaneous monitoring and prediction. Third,
empirical investigations using real manufacturing
datasets—rather than simulated data are still limited,
leaving room for more applied research that validates
theoretical methods in operational settings. The

present study addresses these gaps by systematically
applying multivariate statistical techniques including
descriptive statistics, correlation analysis, PCA,
Hotelling’s T? monitoring, and logistic regression to
a real manufacturing process dataset. The objective is
to identify underlying patterns of process variability,
detect multivariate outliers, and evaluate the
predictive capability of logistic regression in
classifying product quality outcomes. This integrated
approach  bridges the gap between process
monitoring and predictive analytics, demonstrating
how traditional statistical methods can complement
modern predictive frameworks. By combining
interpretability with empirical rigor, the study
contributes both methodological insights and
practical implications for the advancement of data-
driven quality control in manufacturing systems.

Methodology

Data Description and Variable Selection

The dataset utilized in this study was derived from a
manufacturing quality control process consisting of
400 recorded observations across six key operational
variables and a resulting Quality Index. The process
variables include Temperature (°C), Pressure (psi),
Viscosity (cp), Thickness (mm), Speed (m/min), and
Humidity (%), each representing critical dimensions
of material and process behavior. These variables
were selected based on their theoretical and practical
relevance to product consistency, structural integrity,
and performance characteristics. The Quality Index
serves as a composite response variable quantifying
the overall conformity of each manufactured sample
to desired specifications. Prior to analysis, all data
were screened for completeness, measurement
consistency, and outlier behavior. Missing or
anomalous entries, if any, were handled through
listwise deletion to maintain statistical integrity. Each
variable was standardized using z-score normalization
to eliminate unit disparities and ensure
comparability in multivariate techniques such as
Principal Component Analysis (PCA) and
Hotelling’s T? control charting. Descriptive statistics
were first computed to summarize the central
tendency, dispersion, and range of each variable,
providing an initial diagnostic overview of process
stability. This was followed by a correlation analysis
to evaluate intervariable relationships and potential
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multicollinearity. The correlation structure provided
a preliminary indication of whether variables were
linearly dependent a crucial consideration before
applying PCA. The dataset, representing real process
measurements, thus provides a robust foundation for
exploring the interdependence of parameters and
their joint influence on quality outcomes. This step
ensures that the subsequent analyses are grounded in
empirical realism while maintaining methodological
rigor, aligning with best practices in multivariate
statistical process control research.

Statistical Framework and Analytical Procedures

The analytical framework adopted in this research
integrates both exploratory multivariate analysis and
predictive  classification modeling to capture
comprehensive insights into process behavior. The
methodology ~ proceeds  sequentially  through
descriptive, diagnostic, and inferential stages.
Initially, Principal Component Analysis (PCA) was
employed to reduce dimensionality and uncover
latent variable structures that account for the
majority of process variability. PCA extracts
orthogonal principal components—linear
combinations of the original standardized variables
ranked by their associated eigenvalues. The first few
components, representing dominant variation
sources, were retained based on cumulative
explained variance exceeding 70% and the visual
inflection observed in the PCA scree plot. The
resulting loading matrix was examined to interpret
how each process variable contributes to the
principal components, thereby revealing the
underlying operational dimensions driving quality
outcomes. Following PCA, Hotelling’s T? statistic
was calculated for each observation to identify
potential multivariate outliers. The T2 control chart
was constructed using the principal component
scores, enabling simultaneous monitoring of
multiple correlated variables at a specified
confidence level (a = 0.01). Points exceeding the
upper control limit were flagged as abnormal,
suggesting atypical process states warranting further
investigation. This step provided a rigorous,
statistically grounded method for detecting
deviations that would otherwise go unnoticed in
univariate control schemes. Together, PCA and T2
analyses served to diagnose the multivariate structure

of process variability and assess overall system
stability before predictive modeling was performed.

Predictive Modeling and Performance Evaluation
To complement the multivariate analysis, a logistic
regression model was developed to predict the
Quality Index classification outcome differentiating
between conforming and nonconforming products
based on the process variables. Logistic regression
was selected for its interpretability, computational
efficiency, and suitability for binary outcome
modeling. The dependent variable was encoded as a
binary indicator (O = acceptable, 1 = defective or low-
quality), while the six standardized process variables
were used as predictors. Model parameters were
estimated using maximum likelihood estimation
(MLE), and statistical significance was assessed
through Wald chi-square tests to determine the
relative contribution of each predictor to quality
outcomes.The performance of the classifier was
evaluated using standard metrics including Accuracy,
Precision, Recall, Fl-score, and Area Under the
ROC Curve (AUC). The confusion matrix was used
to assess classification reliability and identify
potential biases, such as «class imbalance or
misclassification  tendencies. The ROC curve
provided a threshold-independent evaluation of
discriminative ability, summarizing the trade-off
between sensitivity and specificity. In addition,
model calibration was examined to ensure
probabilistic consistency between predicted and
actual outcomes. Collectively, these metrics offered a
multidimensional ~ perspective ~ on  predictive
effectiveness, complementing the exploratory and
monitoring analyses. The integration of multivariate
diagnostics (PCA and Hotelling’s T?%) with predictive
modeling  (logistic  regression) established a
comprehensive methodological framework capable of
both explaining and forecasting quality variations in
manufacturing systems, thereby reinforcing the
robustness and practical applicability of the study’s
findings.

Results and Discussion

Table 1 presents the descriptive statistics for the key
process variables and the Quality Index derived from
a sample of 400 manufacturing observations. The
purpose of this table is to provide a foundational
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understanding of the dataset’s distribution, central
tendency, and variability before conducting advanced
multivariate analyses. Each variable Temperature
(°C), Pressure (psi), Viscosity (cp), Thickness (mm),
Speed (m/min), Humidity (%), and the Quality
Index captures an essential dimension of the
manufacturing process. The mean temperature of
approximately 200.11°C indicates that the process is
generally maintained within a high thermal range,
with moderate wvariation (standard deviation =
4.80°C). The minimum and maximum values
(183.79°C to 219.26°C) suggest that temperature
control is relatively consistent, though a few extreme
observations exist, potentially representing transient
fluctuations. Pressure shows an average of 49.92 psi
with a small dispersion (standard deviation = 2.01
psi), demonstrating good process stability in this
parameter. The viscosity values (mean = 30.39 cp, std
=2.98 ¢p) and film thickness (mean = 0.502 mm, std
= 0.051 mm) reveal moderate variability, reflecting
inherent physical changes in the production material
or slight machine calibration effects. Speed, with a
mean of 120.66 m/min, exhibits a broader spread

Table 1: Descriptive Statistics

(standard deviation = 9.68), which may imply
adjustments during different production runs to
maintain product quality. Humidity levels vary
around 39.82% (standard deviation = 4.86%), a
range that could influence the consistency of
viscosity and surface properties. The Quality Index
mean value 45.92 with standard deviation 5.31
shows that most manufactured items are of uniform
quality, though a few high-end values (up to 64.33)
suggest occasional superior performance.
Collectively, these descriptive results establish that
while the process maintains overall stability, certain
parameters such as speed and temperature
demonstrate slightly higher variability, which might
warrant deeper statistical monitoring. This summary
also provides a baseline for understanding inter-
variable relationships explored in the subsequent
correlation and multivariate analyses. Descriptive
statistics, therefore, act as the initial diagnostic step,
highlighting the data’s reliability, range, and
readiness for inferential techniques such as PCA and
control charting.

Variable count mean std min 25% 50% 75% max
Temperature_C 400.0 200.11 | 4.802 183.794 |196.723 | 200.29 | 203.154 | 219.264
Pressure_psi 400.0 49.923 | 2.013 44.606 | 48.5 49.932 | 51.244 | 56.158
Viscosity_cp 400.0 30.393 | 2.978 21311 | 28.407 | 30475 |32.383 | 37.581
Thickness_mm 400.0 0.502 0.051 0.354 0.467 0.502 0.534 0.63
Speed_m_per_min | 400.0 120.663 | 9.685 90.596 | 114.479 | 120.339 | 127.134 | 151.931
Humidity_pct 400.0 39.818 | 4.857 24902 | 36.674 | 39.963 | 43.181 | 55.55
Quality_Index 400.0 45915 | 5.308 33.078 | 42.312 | 45.792 | 49.238 | 64.326

Table 2 presents the correlation coefficients among
all process variables and the overall Quality Index,
providing a foundational understanding of
interrelationships within the manufacturing dataset.
The correlation matrix is essential for detecting
potential multicollinearity, identifying underlying
dependencies, and informing subsequent
multivariate analyses such as Principal Component
Analysis (PCA) and regression modeling. The results
reveal that most correlations are relatively weak,
suggesting that the variables capture distinct aspects
of the production process. The most notable positive
correlation appears between Temperature (°C) and

Quality Index (r = 0.316), implying that higher

process temperatures are moderately associated with
better product quality. This could be attributed to
improved material flow or more complete curing at
elevated temperatures. Conversely, Pressure (psi)
demonstrates a weak negative correlation with the
Quality Index (r = -0.212), indicating that excessive
pressure may slightly reduce quality perhaps through
over-compression or deformation effects during
manufacturing. Other variables, such as Viscosity
(cp) and Speed (m/min), show small positive
correlations with the Quality Index (r = 0.112 and
0.123, respectively), suggesting that moderately
higher viscosity and line speed may enhance quality
outcomes, though the effects are not pronounced.
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Humidity (%) exhibits a slight negative correlation
with quality (r = -0.133), consistent with
expectations that high moisture levels can interfere
with process stability or surface uniformity. The weak
intercorrelations among process parameters (mostly
|r] < 0.1) suggest that the production system is
largely independent across operational dimensions,
an advantageous feature for process control, as it
implies minimal redundancy between measured
variables. However, a few modest relationships exist—
for example, a negative link between Temperature
and Pressure (r = -0.114), potentially reflecting

Table 2: Correlation Matrix

compensatory control adjustments. Overall, the
correlation matrix indicates that while no severe
multicollinearity is present, certain relationships—
especially between temperature and quality—merit
further investigation. These findings justify the use of
multivariate techniques such as PCA to uncover
latent structures that may not be apparent through
pairwise correlations alone. The results emphasize
the complexity of the quality formation process,
where  multiple interacting  variables
collectively influence the final product performance.

weakly

Variable Temperatur | Pressure_ | Viscosity | Thickness_ | Speed_m_per_ | Humidity_ | Quality_In
e C psi _cp mm min pct dex

Temperature_ | 1.0 0.114 -0.035 0.026 -0.058 0.021 0.316

C

Pressure_psi 0.114 1.0 0.014 0.066 0.007 0.021 0.212

Viscosity_cp -0.035 0.014 1.0 0.023 -0.005 0.024 0.112

Thickness_m | 0.026 0.066 0.023 1.0 -0.081 0.008 0.027

m

Speed_m_per_ | -0.058 0.007 -0.005 -0.081 1.0 0.019 0.123

min

Humidity_pct | 0.021 0.021 0.024 0.008 0.019 1.0 0.133

Quality_Index | 0.316 0.212 0.112 0.027 0.123 -0.133 1.0

Table 3A presents the proportion of variance
explained by each principal component (PC) derived
from Principal Component Analysis (PCA). This
table summarizes how effectively the extracted
components represent the total variability in the
dataset composed of six standardized process
variables: ~ Temperature,  Pressure,  Viscosity,
Thickness, Speed, and Humidity. The aim of PCA in
this context is dimensionality = reduction—
transforming correlated process variables into a
smaller set of orthogonal components while
retaining most of the original information. As shown
in the table, the first principal component (PC1)
explains 19% of the total variance, followed closely
by PC2 (18.4%) and PC3 (17.1%). Together, these
three components account for approximately 54.6%
of the total variability. The subsequent components—
PC4 (16.2%), PC5 (15%), and PC6 (14.2%)—
contribute progressively less to the cumulative
variance, reaching 100% after the sixth component.
The relatively balanced distribution of variance

across components suggests that the dataset does not
exhibit strong dominance by a single underlying
factor, but rather multiple moderate influences
distributed among the wvariables. This structure
implies that quality control in the manufacturing
process is influenced by several independent sources
of wvariation, potentially representing thermal,
mechanical, and environmental dimensions. In
practice, retaining the first three to four components
would capture a substantial portion (70-75%) of the
total information, striking a reasonable balance
between simplification and interpretive power. From
a  methodological perspective, the
variance curve implied by these results would likely
show a gradual, rather than steep, decline typical of
complex production systems where no single
operational parameter dominates overall quality
outcomes. This finding reinforces the necessity of
employing multivariate monitoring tools, as single-
variable control would overlook meaningful
multidimensional Overall, the

cumulative

interactions.
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explained variance distribution underscores that
PCA  successfully reduces dimensionality while
preserving interpretive integrity. The relatively even
variance distribution across components indicates
that process optimization requires a holistic
approach, integrating insights from multiple

Table 3A: PCA Explained Variance

correlated variables rather than focusing on isolated
factors. Hence, PCA serves as a crucial step in
summarizing and visualizing multivariate process
behavior, paving the way for subsequent control
chart analysis and outlier detection.

PC Explained_Var Cumulative_Var
PCl1 0.19 0.19

PC2 0.184 0.374

PC3 0.171 0.546

PC4 0.162 0.707

PC5 0.15 0.858

PC6 0.142 1.0

Table 3B presents the loading coefficients for the
first three principal components (PC1-PC3) derived
from the Principal Component Analysis (PCA).
These loadings represent the correlation between
each original standardized variable and the
corresponding principal component, indicating how
strongly each variable contributes to the formation of
the new latent dimensions. Interpreting these
patterns is fundamental to understanding the
underlying structure of variation within the
manufacturing process data. For PCI1, the highest
loadings are observed for Temperature (-0.684) and
Pressure (0.633), with moderate contributions from
Viscosity (0.213) and Speed (0.262). The strong and
opposing signs of Temperature and Pressure suggest
that PC1 primarily represents a thermal-mechanical
contrast dimension, where higher temperatures tend
to be associated with lower pressures. This
component may thus capture the operational balance
between heating and compression in the production
process key determinants of material consistency and
final product quality. PC2 is dominated by large
negative loadings for Thickness (-0.706) and
Pressure (-0.282), along with a strong positive
loading for Speed (0.611). This pattern indicates that
PC2 reflects a production throughput dimension,
opposing mechanical film thickness against line

speed. The inverse relationship suggests that when
production speed increases, the product becomes
slightly thinner, consistent with typical industrial
coating or extrusion behaviors. PC3, on the other
hand, shows large negative contributions from
Viscosity (-0.623) and Humidity (-0.758). This
component likely represents an environmental-
material stability dimension, where high humidity
and viscosity covary negatively with product
performance, possibly due to environmental
moisture interfering with the material's flow
characteristics. Together, these three components
provide a nuanced multivariate decomposition of the
process. PC1 highlights trade-offs between heat and
pressure, PC2 emphasizes throughput versus material
thickness, and PC3 encapsulates environmental and
rheological effects. Such interpretation is critical for
process control because it identifies distinct axes of
variation, each representing an operational domain
that can be independently monitored and optimized.
By reducing redundancy and summarizing complex
relationships, PCA loadings enable clearer diagnostic
insight into which variables most strongly influence
quality outcomes and where control interventions

should be focused.
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Table 3B: PCA Loadings (PC1-PC3)

Variable PC1 PC2 PC3
Temperature_C -0.684 0.14 0.013
Pressure_psi 0.633 -0.282 0.112
Viscosity_cp 0.213 0.163 -0.623
Thickness_ mm 0.052 -0.706 .07
Speed_m_per_min 0.262 0.611 0.14
Humidity_pct 0.123 0.047 A.758

Table 4 presents the results of the multivariate
outlier detection using Hotelling’s T? statistic at a
significance level of a = 0.01. The Hotelling’s T?
method is a fundamental tool
statistical process control (MSPC), designed to detect
unusual combinations of variable values that deviate
significantly from the overall multivariate mean
structure. Unlike univariate control charts, which
assess each variable independently, the T? approach
simultaneously considers the covariance structure
among all variables, providing a holistic view of
process performance. In this analysis, two
observations were identified as significant outliers,
with T2 values of 21.539 and 17.933, both exceeding
the critical threshold corresponding to a = 0.01.
These therefore classified as
statistically and flagged for further
investigation. The presence of outliers indicates that
certain samples substantially from the
established multivariate operating conditions. Such

in multivariate

observations are

unusual
deviate

deviations may arise from short-term equipment
malfunctions, measurement errors, or transient shifts
in raw material properties, all of which can
compromise process stability and final product
quality. From a quality control perspective, detecting
even a small number of outliers at a stringent

Table 4: Hotelling’s T2 Outliers (a = 0.01)

confidence level (1%) underscores the effectiveness
of the monitoring system. While the dataset is largely
stable, these anomalies highlight potential early
warnings of process disturbances. For instance, a
simultaneous deviation in temperature, pressure, and
humidity could collectively produce an observation
that falls outside the normal operational envelope,
even if each variable individually remains within its
acceptable univariate range. Moreover, the detection
of multivariate outliers validates the need for using
techniques such as PCA-based T? monitoring over
traditional single-variable charts. These findings
suggest that implementing realtime multivariate
control schemes could improve sensitivity to subtle
process drifts, thereby preventing quality degradation
before it becomes operationally significant. In
summary, Table 4 demonstrates that the
manufacturing process operates under generally
controlled conditions, with only minimal instances
of multivariate abnormality. The identified outliers
provide actionable insight, prompting further root-
cause analysis to ensure that these deviations are
addressed and that longterm process integrity is
maintained.

T2 Outlier_01
21.539 1.0
17.933 1.0

Table 5A presents the confusion matrix for the
logistic regression classifier applied to predict the
Quality Index outcome based on the set of process
variables. The confusion matrix provides a detailed
summary of the model’s classification performance

by comparing predicted and actual class labels.
Specifically, the table quantifies the counts of
correctly and incorrectly classified instances in a
binary classification framework, thereby offering
insights into the model’s discriminative capability
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and its potential practical reliability in a
manufacturing quality monitoring context. In the
presented matrix, 87 instances of the negative class
(Actual_0) were correctly predicted as negative
(Pred_0), while 3 instances were misclassified as
positive (Pred_1). Similarly, of the positive class
(Actual_1), only 4 instances were correctly predicted
as positive, while 26 were incorrectly classified as
negative. These results indicate that the model has a
strong tendency toward correctly identifying non-
defective or lower-quality samples (negative class) but
performs less effectively in detecting defective or
high-risk samples (positive class). This asymmetry
suggests potential class imbalance in the dataset,
where one class (likely the negative or “in-spec”
category) dominates the sample distribution. In such
scenarios, logistic regression often biases toward the
majority class, yielding high overall accuracy but poor
sensitivity to minority events—here, the defective or
out-of-spec cases. The practical implication is that,
while the model achieves good stability in routine

Table 5A: Confusion Matrix

conditions, it may fail to adequately signal quality
deviations, limiting its usefulness for proactive fault
detection. Nevertheless, the confusion matrix
remains a valuable diagnostic tool, indicating where
model calibration may be required. Possible
improvements include rebalancing the training data,
adjusting the classification threshold, or employing
alternative algorithms such as random forests or
support vector machines that can better handle
nonlinear relationships and class imbalance. Overall,
Table 5A highlights the classifier’s conservative
prediction behavior favoring accuracy on the
dominant class at the expense of sensitivity to
anomalies. From a  manufacturing quality
standpoint, this outcome underscores the need to
prioritize recall improvement strategies, ensuring that
potential defects or deviations are more reliably
identified to enhance overall process robustness and
product assurance.

Pred 0O Pred_1
Actual 0 87 3
Actual 1 26 4

Table 5B presents the key performance metrics of the
logistic regression classifier, providing a quantitative
evaluation of its ability to predict the Quality Index
class labels. These metrics Accuracy, Precision,
Recall, Fl-score, and Area Under the Curve (AUC)
collectively offer a comprehensive assessment of the
model’s predictive reliability, balance between false
positives and false negatives, and overall
discriminative capacity. The reported Accuracy of
0.758 indicates that approximately 75.8% of the
total predictions made by the model were correct.
While this reflects a reasonably high level of
correctness, accuracy alone can be misleading in
datasets where class imbalance exists. This concern is
evident when examining the remaining metrics. The
Precision of 0.571 suggests that among all cases
predicted as positive (i.e., samples flagged as
potentially defective or high-risk), only 57.1% were
actually positive. This moderate precision indicates
that the model produces a notable proportion of

false alarms, which could be inefficient in a
production setting if each flagged case demands
costly inspection. However, the Recall value of 0.133
is considerably low, signifying that the model
correctly identifies only 13.3% of actual defective or
high-risk samples. This is a critical shortcoming for
quality control applications, as missed detections
(false negatives) can lead to defective products
reaching customers. The Fl-score of 0.216, which
harmonizes precision and recall, further confirms
weak balance in the classifier’s performance,
indicating that the model lacks robustness in
detecting minority-class events. The AUC value of
0.644 provides an additional perspective on overall
discriminative power. While an AUC above 0.5
suggests that the model performs better than random
guessing, a value of 0.644 is only modest and points
to limited separation between positive and negative
cases. In a practical quality monitoring context, these
results imply that although the model performs

https://jmhorizons.com

| Anwer et al., 2025 |

Page 125




Journal of Media Horizons
ISSN: 27104060 2710-4052

Volume 6, Issue 6, 2025

adequately in stable conditions, it lacks sufficient
sensitivity for early fault detection. Enhancements
could include applying advanced regularization
techniques, feature engineering, or resampling
strategies such as SMOTE to balance the dataset.
Overall, Table 5B underscores that the logistic

Table 5B: Classification Metrics

regression model provides a baseline predictive
framework but requires further refinement to meet
industrial standards for predictive accuracy and
reliability.

Metric Value
Accuracy 0.758
Precision 0.571
Recall 0.133
F1 0.216
AUC 0.644

Figure 1 presents the scatter matrix of process
variables, offering a comprehensive pairwise
visualization of relationships among all six measured
parameters  Temperature, Pressure, Viscosity,
Thickness, Speed, and Humidity in the
manufacturing dataset. The scatter matrix serves as a
fundamental exploratory data analysis (EDA) tool
that enables visual assessment of potential linear or
nonlinear associations, clustering tendencies, and
outlier patterns across multiple variable pairs. From
an analytical standpoint, the diagonal plots of the
scatter matrix typically display the distribution
(histogram or density) of each variable, revealing that
most process variables exhibit approximately normal
distributions with moderate dispersion. This
indicates a relatively stable and well-controlled
production process without extreme deviations in
measurement. However, slight skewness in variables
such as Speed and Viscosity suggests operational
variability that may be influenced by machine
calibration or raw material differences.When
examining the off-diagonal pairwise relationships,
Temperature and Pressure show a subtle negative
trend, consistent with the weak correlation
coefficient (r = -0.114) reported earlier. This implies
that higher temperature settings tend to coincide
with slightly lower pressures, potentially reflecting an
intentional control mechanism to maintain optimal
product formation conditions. Temperature also

shows a mild positive association with Quality Index,
visible as a faint upward trend indicating that
elevated process temperatures may contribute to
better-quality outcomes, possibly through improved
curing or bonding mechanisms.Other variable pairs,
such as Speed vs. Thickness and Humidity vs.
Viscosity, display more diffuse scatter patterns,
confirming the overall weak interdependence
between these parameters. This independence
among variables is advantageous for multivariate
modeling since it reduces redundancy and ensures
that each variable contributes unique information to
principal component and regression analyses.
Additionally, the scatter matrix may reveal a few
isolated points distant from the main data clusters,
suggesting the presence of potential outliers or
abnormal operational conditions—findings that align
with the Hotelling’s T? results identifying
multivariate outliers. Overall, Figure 1 provides a
visual affirmation that the dataset is generally well-
behaved, moderately linear, and suitable for
multivariate analysis. The weak to moderate
relationships among variables underscore the
complexity of quality formation in manufacturing
processes, justifying the application of advanced
techniques like PCA and multivariate control charts
to uncover latent patterns not immediately
observable in bivariate relationships.
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Figure 1: Scatter matrix of process variables
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Figure 1: Scatter Matrix of Process Variables

Figure 2 illustrates the correlation matrix heatmap
for all process variables and the Quality Index,
providing a visual representation of the linear
relationships summarized numerically in Table 2.
The heatmap serves as an effective diagnostic tool in
multivariate analysis, allowing immediate recognition
of strong or weak associations through color
intensity and direction (positive or negative). This
visualization enhances interpretability by translating
numerical correlation coefficients into an intuitive
spatial and color-coded format, thereby highlighting
underlying dependencies or independence among
process parameters. In the heatmap, most cells
display muted or intermediate color tones, indicating
that the majority of correlations are weak to
moderate. This finding corroborates the numerical
evidence that no pair of variables exhibits excessive
multicollinearity. The most prominent positive
correlation appears between Temperature and
Quality Index (r = 0.316), shown as a brighter warm-
colored cell. This suggests that higher operational
temperatures are generally beneficial to product
quality likely because heat facilitates better molecular
bonding or curing. Conversely, a notable cool-
colored cell represents the

negative correlation between Pressure and Quality
Index (r = -0.212), indicating that elevated pressure
conditions might negatively influence the structural
or-surface attributes of the final product. Other
relationships, such as between Speed and Quality
Index (r = 0.123) and Viscosity and Quality Index (r
= 0.112), appear as light warm hues, reflecting weak
but positive associations. In contrast, Humidity
shows faintly cool tones across most relationships,
particularly with Quality Index (r = -0.133), implying
that excessive moisture slightly degrades production
consistency potentially through its effect on material
rheology. Importantly, the heatmap’s near-symmetric
pattern with minimal high-intensity blocks indicates
that process variables operate largely independently,
ensuring the robustness of subsequent PCA and
regression analyses. The lack of extreme correlations
also confirms the statistical appropriateness of
including all variables in multivariate modeling
without the need for dimensionality reduction solely
to correct for multicollinearity. Overall, Figure 2
provides strong visual confirmation that while the

manufacturing process variables are mostly
independent, certain moderate  relationships
particularly those involving temperature and

pressure—play influential roles in determining overall
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quality performance. This figure thus establishes an
essential empirical foundation for understanding
variable interplay prior to the application of more

Figure 2: Correlation matrix heatmap

complex analytical techniques such as PCA and
logistic regression.
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Figure 2: Correlation Matrix Heatmap

Figure 3 presents the PCA Scree Plot, which
graphically depicts the proportion of total variance
explained by each principal component derived from
the process dataset. The scree plot is a vital
visualization in multivariate statistical analysis, as it
helps determine the optimal number of components
to retain for dimensionality reduction while
preserving the essential variability of the data. Each
point on the plot corresponds to an eigenvalue
associated with a particular principal component,
and the cumulative curve reflects the cumulative
variance explained across successive components. In
this figure, the first few components PC1 through
PC3 demonstrate the highest explanatory power,
collectively capturing approximately 54.6% of the
total variance. The subsequent components (PC4-

PC6) contribute incrementally smaller portions, with
diminishing returns. The initial steep decline in the
eigenvalue magnitude followed by gradual
flattening of the curve represents the classical
“elbow” pattern, a visual indicator used to identify

a

the point beyond which additional components add
little new information. In this case, the elbow
appears near PC3 or PC4, suggesting that retaining
the first three or four components would yield an
effective low-dimensional representation of the
process without substantial information loss. This
distribution of explained variance indicates that the
process data possess moderate multivariate structure
rather than a single dominant factor. The variability
is distributed across several independent latent
dimensions, each representing distinct operational
aspects  such thermal-mechanical  balance,
throughput control, and environmental stability, as
identified in the PCA loadings interpretation. This
finding supports the notion that product quality is
influenced by the collective contribution of multiple
moderately correlated process factors rather than any
single dominant From practical
perspective, the scree plot aids engineers and quality
analysts in selecting a reduced set of principal
components for control charting or predictive

as

variable. a
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modeling. Retaining three components would
simplify monitoring without overly compromising
the model’s fidelity. The cumulative curve nearing
unity after PC6 confirms that PCA effectively
captures the full data variability. In summary, Figure
3 visually reinforces that dimensionality reduction

through PCA is justified and efficient. It identifies a
clear inflection point that balances simplicity and
accuracy,  providing a
comprehensive foundation for multivariate process
monitoring and fault detection.

parsimonious yet

Figure 3: PCA Scree Plot
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Figure 4 displays the Hotelling’s T? control chart
constructed at a significance level of a = 0.01, serving
as a multivariate extension of traditional Shewhart
control charts. This visualization is one of the most
powerful tools in Multivariate Statistical Process
Control (MSPC), as it simultaneously monitors
multiple correlated process variables and identifies
any observation that deviates significantly from the
multivariate mean structure. Each plotted point in
the chart represents a sample’s Hotelling’s T2
statistic, which quantifies its overall distance from
the center of the process distribution in a
multidimensional space. In the chart, most sample
points cluster well below the control limit, indicating
that the manufacturing process remains generally
stable and operates within its expected statistical
boundaries. However, two points are observed

exceeding the upper control limit (UCL)
corresponding to the a = 0.01 threshold. These
points align precisely with those identified in Table
4, confirming the presence of multivariate outliers or
process anomalies. Their occurrence suggests
temporary deviations in operational parameters—
potentially simultaneous shifts in temperature,
pressure, or humidity—that collectively
statistically ~ significant  variations
individual variable values remain within normal
univariate limits. The ability of the Hotelling’s T?
chart to detect such joint variable deviations
underscores its advantage over traditional univariate
control charts. Whereas individual charts might fail
to flag subtle but correlated process shifts, the T?2
chart integrates these multidimensional effects into a
single monitoring index, improving early fault

create

even when
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detection and process reliability. The identified out-
of-control points serve as early warning signals,
prompting root-cause analysis to investigate potential
sources such as sensor calibration drift, raw material
inconsistency, or equipment malfunction. Overall,
the control chart’s visual structure—with the majority
of observations tightly contained below the
threshold—demonstrates effective process consistency
and robust quality control. The few anomalies do
not indicate systemic instability but rather localized

201
15}

10

events worthy of targeted investigation. In
conclusion, Figure 4 provides strong visual validation
that the process operates under statistically
controlled conditions, with only minor deviations
detected. This outcome reinforces the reliability of
the multivariate monitoring framework and
illustrates how Hotelling’s T? analysis can effectively
complement PCA for ongoing process supervision
and anomaly detection in manufacturing systems.

Figure 4: Hotelling's T2 Control Chart (alpha=0.01)
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Figure 4: Hotelling’s T? Control Chart (a=0.01)

Figure 5 presents the Receiver Operating
Characteristic (ROC) curve for the logistic regression
classifier applied to predict the Quality Index
classification outcomes. The ROC curve is a crucial
diagnostic tool in model evaluation, as it illustrates
the trade-off between True Positive Rate (Sensitivity
or Recall) and False Positive Rate (1 - Specificity)
across varying decision thresholds. By plotting these
rates, the ROC curve visually captures the classifier’s
ability to distinguish between the positive (defective
or high-risk) and negative (in-spec or normal) classes,
independent of any specific threshold setting. In this
figure, the curve lies moderately above the diagonal
reference line (the line of no discrimination),
indicating that the model performs better than
random guessing but with limited discriminative
strength. The Area Under the Curve (AUC) value of
0.644, as reported in Table 5B, quantitatively

supports this interpretation. AUC values closer to
1.0 signify near-perfect classification performance,

whereas values near 0.5 indicate random
performance. Therefore, an AUC of 0.644 suggests
that the logistic regression model can correctly
distinguish between defective and non-defective cases
approximately 64% of the time. The relatively
shallow slope near the origin and gradual rise of the
curve reflect a conservative classifier that prioritizes
specificity over sensitivity—consistent with the
confusion matrix results, which showed high
accuracy but low recall. This behavior implies that
the model tends to minimize false positives
(misidentifying good products as defective) at the
expense of missing actual defective samples. In
quality control contexts, such a trade-off may be
undesirable because undetected defects can lead to
product failures downstream. The ROC curve also
offers valuable insights for threshold optimization.
Adjusting the classification cutoff could potentially
improve the model’s balance between sensitivity and
specificity, depending on operational priorities. For
instance, if detecting every potential defect is critical,
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lowering the decision threshold may yield a higher
recall, albeit with more false alarms. In summary,
Figure 5 demonstrates that while the logistic
regression model possesses a modest discriminatory
ability, it is not sufficiently robust for high-stakes
predictive quality monitoring. The ROC analysis

highlights the need for further model refinement
perhaps through advanced algorithms or feature
engineering to achieve higher AUC values and more
effective  defect  detection  performance in
multivariate manufacturing environments.

Figure 5: ROC Curve (AUC = 0.644)
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Figure 5: ROC Curve for Logistic Regression Classifier

Conclusion

The present study applied an integrated suite of
multivariate statistical techniques to analyze,
monitor, and predict product quality within a
manufacturing environment. By combining Principal
Component Analysis (PCA), Hotelling’s T? control
charting, and logistic regression classification, the
research established a comprehensive analytical
framework that simultaneously addressed process
variability, multivariate dependency, and predictive
performance. This holistic approach demonstrated
the effectiveness of data-driven statistical modeling in
diagnosing

process behavior and identifying potential quality
deviations that might remain undetected using
conventional univariate methods. The descriptive
and correlation analyses revealed that while the

manufacturing process maintained overall stability,
certain variables particularly temperature, speed, and
humidity exhibited moderate variability that could
influence the Quality Index. PCA further reduced
the dimensionality of the dataset, uncovering latent
factors that accounted for more than half of the total
process variance. These components reflected
interpretable operational dimensions such as
thermal-mechanical balance, throughput control,
and environmental effects, thereby providing a
concise yet meaningful representation of the system’s
underlying structure. The Hotelling’s T? analysis
successfully identified a small number of multivariate
outliers, confirming that occasional joint deviations
in process parameters can occur even when
individual measurements appear within specification
limits. Such findings underscore the critical
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importance  of  multivariate  monitoring  in
maintaining process integrity. The logistic regression
model, though exhibiting moderate accuracy and a
limited recall rate, offered valuable insights into the
probabilistic influence of process variables on
product quality classification. The corresponding
ROC curve and performance metrics indicated that
while the model achieved reasonable predictive
capability, further refinement through data balancing
or advanced algorithms could enhance sensitivity to
defective outcomes. Overall, the study concludes that
the integration of multivariate analysis and predictive
modeling offers a robust foundation for modern
quality control. The findings reinforce that data-
driven approaches—rooted in statistical theory
remain indispensable for intelligent manufacturing
and process optimization. Future research should
expand upon this framework by incorporating
nonlinear modeling techniques, realtime data
analytics, and adaptive control systems to further
improve predictive accuracy and operational
resilience in industrial quality assurance.
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