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Abstract 
This study applies a comprehensive multivariate statistical framework to monitor 
and predict product quality in a manufacturing process. Using data from 400 
production observations, the analysis integrates descriptive statistics, correlation 
assessment, Principal Component Analysis (PCA), Hotelling’s T² control charting, 
and logistic regression modeling. PCA effectively reduced data dimensionality, 
revealing key latent factors explaining over half of total process variance. 
Hotelling’s T² analysis identified multivariate outliers, indicating occasional 
deviations from normal operating conditions. The logistic regression classifier 
demonstrated moderate accuracy but limited sensitivity, highlighting the trade-off 
between model interpretability and defect detection capability. Overall, the 
integrated framework enhances understanding of process variability, supports early 
fault detection, and strengthens data-driven decision-making in industrial quality 
control. The study underscores the value of combining traditional multivariate 
statistics with predictive analytics for intelligent manufacturing and continuous 
process improvement. 
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INTRODUCTION
Ensuring consistent product quality in modern 
manufacturing environments is a central challenge of 
industrial engineering. As production systems 
become increasingly complex and data-driven, the 
need for robust statistical frameworks capable of 
handling multiple interdependent variables has 
intensified. Traditional quality monitoring 
approaches such as Shewhart’s control charts 
developed in the early twentieth century nwere 

originally designed for single-variable monitoring and 
thus remain limited in scope when applied to 
multidimensional processes (Montgomery, 2020). In 
real-world production systems, process variables such 
as temperature, pressure, viscosity, and humidity 
interact simultaneously, meaning that variations 
rarely occur in isolation. Univariate methods, by 
analyzing each parameter independently, can 
therefore overlook correlated shifts that collectively 
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signal underlying process disturbances or potential 
quality degradation. To overcome these limitations, 
Multivariate Statistical Process Control (MSPC) 
techniques have been developed as a comprehensive 
approach for analyzing and monitoring correlated 
process data. The conceptual foundation of MSPC 
was laid by Hotelling (1947) through the 
introduction of the Hotelling’s T² statistic, which 
generalized the Shewhart chart to a multivariate 
context. By incorporating the covariance structure 
among variables, the T² statistic provides a holistic 
measure of process deviation, enabling the detection 
of subtle, multidimensional shifts that might not be 
evident when each variable is monitored separately. 
This advancement marked a paradigm shift in 
quality control, transitioning from independent 
parameter analysis to system-wide statistical 
supervision. Subsequent developments in 
multivariate statistics led to the integration of 
Principal Component Analysis (PCA) as a powerful 
dimensionality reduction and pattern recognition 
tool. PCA decomposes correlated process variables 
into orthogonal principal components that 
summarize the majority of the variance using fewer 
dimensions (Jackson, 2003). This technique became 
a cornerstone of process monitoring after the 
seminal contributions of Nomikos and MacGregor 
(1995) and Kourti and MacGregor (1996), who 
demonstrated the use of PCA-based control charts to 
efficiently identify abnormal operating conditions 
and distinguish between systematic and random 
sources of variation. The combination of PCA with 
Hotelling’s T² and Q (squared prediction error) 
statistics has since become standard in modern 
industrial analytics, allowing practitioners to visualize 
process structure while maintaining rigorous 
statistical control. 
Further refinements of PCA have been introduced to 
address nonlinear and dynamic industrial processes. 
Techniques such as Dynamic PCA (DPCA) (Ku et 
al., 1995) and Kernel PCA (KPCA) (Lee et al., 2004) 
extend classical PCA by capturing temporal 
correlations and nonlinear relationships, making 
them suitable for continuous processes in sectors like 
chemical manufacturing and semiconductor 
production. These developments underscore the 
increasing sophistication of multivariate methods, 
evolving from simple linear decompositions to 

adaptive, data-driven representations of complex 
process behavior. Alongside PCA, other multivariate 
methodologies have also been employed for process 
monitoring and quality prediction. Partial Least 
Squares (PLS) regression is particularly valuable 
when both predictor and response variables are 
correlated, as it extracts latent factors that explain 
covariance between input and output spaces (Wold 
et al., 2001). Likewise, Independent Component 
Analysis (ICA) has been adopted to isolate 
statistically independent sources of variability, 
providing advantages in detecting non-Gaussian 
process disturbances (Lee & Choi, 2004). 
Comparative studies show that PCA is more suited 
for exploratory analysis and monitoring, while PLS 
and ICA offer stronger predictive capabilities, 
depending on the process characteristics. In recent 
decades, the fusion of machine learning and 
multivariate statistics has driven significant progress 
in quality analytics. Researchers such as Qin (2012) 
and Zhang et al. (2018) have demonstrated that 
combining traditional statistical frameworks like 
PCA or PLS with classifiers such as Support Vector 
Machines (SVM), Random Forests (RF), or Artificial 
Neural Networks (ANNs) yields superior fault 
detection accuracy. These hybrid models capture 
nonlinear, high-dimensional relationships that 
conventional linear methods may fail to identify. 
However, despite these advances, purely statistical 
models remain essential due to their interpretability, 
mathematical rigor, and ease of implementation in 
industrial environments where transparency and 
explainability are paramount. Within this context, 
Hotelling’s T² control chart continues to be one of 
the most widely used multivariate monitoring tools. 
It quantifies the squared Mahalanobis distance 
between each observation and the multivariate mean, 
effectively measuring how far a sample deviates from 
the normal operating condition. This approach is 
particularly sensitive to joint variable shifts, even 
when individual deviations are small (Mason & 
Young, 2002). Modern adaptations include adaptive 
T² charts with time-varying control limits to improve 
responsiveness under non-stationary conditions 
(Tucker et al., 2010). When used in conjunction 
with PCA, T² monitoring provides both 
dimensionality reduction and enhanced sensitivity, 
ensuring that outliers and process anomalies are 
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promptly detected. Parallel to these advancements in 
monitoring, predictive modeling has become a core 
component of contemporary quality control. Logistic 
regression, one of the most interpretable predictive 
models, is often employed to classify product 
outcomes (conforming or nonconforming) based on 
process variables (Hosmer et al., 2013). It estimates 
the probability of defect occurrence and allows for 
quantifying the influence of each process variable on 
the likelihood of producing an out-of-spec product. 
Nevertheless, logistic regression’s performance can be 
limited by linearity assumptions and class imbalance, 
which are common in industrial datasets (Zhang & 
Chiang, 2014). This challenge has motivated 
researchers to combine logistic regression with 
multivariate statistical methods, such as PCA or T² 
analysis, to enhance both accuracy and 
interpretability in predictive quality analytics. The 
rise of Industry 4.0 and the Industrial Internet of 
Things (IIoT) has further expanded the relevance of 
multivariate statistical techniques. With continuous 
data collection from networked sensors, process 
monitoring now extends beyond retrospective quality 
assessment to real-time predictive maintenance and 
adaptive control (Tao et al., 2018). Integrating PCA, 
T² charts, and logistic regression within smart 
manufacturing systems allows for immediate fault 
detection, dynamic adjustment of process 
parameters, and data-driven decision-making. 
Empirical studies by Jiang et al. (2020) and Lee et al. 
(2021) confirm that embedding MSPC frameworks 
into IIoT architectures significantly enhances 
production efficiency, reduces downtime, and 
improves overall product reliability. Despite 
substantial progress, several gaps remain in the 
literature. First, while numerous studies explore 
algorithmic developments, relatively few examine 
comparative performance across integrated statistical 
frameworks applied to real industrial data. Second, 
research often focuses on either process monitoring 
(using PCA or T²) or predictive modeling (using 
logistic regression), with limited attention to how 
these methods can be jointly applied for 
simultaneous monitoring and prediction. Third, 
empirical investigations using real manufacturing 
datasets—rather than simulated data are still limited, 
leaving room for more applied research that validates 
theoretical methods in operational settings. The 

present study addresses these gaps by systematically 
applying multivariate statistical techniques including 
descriptive statistics, correlation analysis, PCA, 
Hotelling’s T² monitoring, and logistic regression to 
a real manufacturing process dataset. The objective is 
to identify underlying patterns of process variability, 
detect multivariate outliers, and evaluate the 
predictive capability of logistic regression in 
classifying product quality outcomes. This integrated 
approach bridges the gap between process 
monitoring and predictive analytics, demonstrating 
how traditional statistical methods can complement 
modern predictive frameworks. By combining 
interpretability with empirical rigor, the study 
contributes both methodological insights and 
practical implications for the advancement of data-
driven quality control in manufacturing systems. 
 
Methodology 
Data Description and Variable Selection 
The dataset utilized in this study was derived from a 
manufacturing quality control process consisting of 
400 recorded observations across six key operational 
variables and a resulting Quality Index. The process 
variables include Temperature (°C), Pressure (psi), 
Viscosity (cp), Thickness (mm), Speed (m/min), and 
Humidity (%), each representing critical dimensions 
of material and process behavior. These variables 
were selected based on their theoretical and practical 
relevance to product consistency, structural integrity, 
and performance characteristics. The Quality Index 
serves as a composite response variable quantifying 
the overall conformity of each manufactured sample 
to desired specifications. Prior to analysis, all data 
were screened for completeness, measurement 
consistency, and outlier behavior. Missing or 
anomalous entries, if any, were handled through 
listwise deletion to maintain statistical integrity. Each 
variable was standardized using z-score normalization 
to eliminate unit disparities and ensure 
comparability in multivariate techniques such as 
Principal Component Analysis (PCA) and 
Hotelling’s T² control charting. Descriptive statistics 
were first computed to summarize the central 
tendency, dispersion, and range of each variable, 
providing an initial diagnostic overview of process 
stability. This was followed by a correlation analysis 
to evaluate inter-variable relationships and potential 
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multicollinearity. The correlation structure provided 
a preliminary indication of whether variables were 
linearly dependent a crucial consideration before 
applying PCA. The dataset, representing real process 
measurements, thus provides a robust foundation for 
exploring the interdependence of parameters and 
their joint influence on quality outcomes. This step 
ensures that the subsequent analyses are grounded in 
empirical realism while maintaining methodological 
rigor, aligning with best practices in multivariate 
statistical process control research. 
 
Statistical Framework and Analytical Procedures 
The analytical framework adopted in this research 
integrates both exploratory multivariate analysis and 
predictive classification modeling to capture 
comprehensive insights into process behavior. The 
methodology proceeds sequentially through 
descriptive, diagnostic, and inferential stages. 
Initially, Principal Component Analysis (PCA) was 
employed to reduce dimensionality and uncover 
latent variable structures that account for the 
majority of process variability. PCA extracts 
orthogonal principal components—linear 
combinations of the original standardized variables 
ranked by their associated eigenvalues. The first few 
components, representing dominant variation 
sources, were retained based on cumulative 
explained variance exceeding 70% and the visual 
inflection observed in the PCA scree plot. The 
resulting loading matrix was examined to interpret 
how each process variable contributes to the 
principal components, thereby revealing the 
underlying operational dimensions driving quality 
outcomes. Following PCA, Hotelling’s T² statistic 
was calculated for each observation to identify 
potential multivariate outliers. The T² control chart 
was constructed using the principal component 
scores, enabling simultaneous monitoring of 
multiple correlated variables at a specified 
confidence level (α = 0.01). Points exceeding the 
upper control limit were flagged as abnormal, 
suggesting atypical process states warranting further 
investigation. This step provided a rigorous, 
statistically grounded method for detecting 
deviations that would otherwise go unnoticed in 
univariate control schemes. Together, PCA and T² 
analyses served to diagnose the multivariate structure 

of process variability and assess overall system 
stability before predictive modeling was performed. 
 
Predictive Modeling and Performance Evaluation 
To complement the multivariate analysis, a logistic 
regression model was developed to predict the 
Quality Index classification outcome differentiating 
between conforming and nonconforming products 
based on the process variables. Logistic regression 
was selected for its interpretability, computational 
efficiency, and suitability for binary outcome 
modeling. The dependent variable was encoded as a 
binary indicator (0 = acceptable, 1 = defective or low-
quality), while the six standardized process variables 
were used as predictors. Model parameters were 
estimated using maximum likelihood estimation 
(MLE), and statistical significance was assessed 
through Wald chi-square tests to determine the 
relative contribution of each predictor to quality 
outcomes.The performance of the classifier was 
evaluated using standard metrics including Accuracy, 
Precision, Recall, F1-score, and Area Under the 
ROC Curve (AUC). The confusion matrix was used 
to assess classification reliability and identify 
potential biases, such as class imbalance or 
misclassification tendencies. The ROC curve 
provided a threshold-independent evaluation of 
discriminative ability, summarizing the trade-off 
between sensitivity and specificity. In addition, 
model calibration was examined to ensure 
probabilistic consistency between predicted and 
actual outcomes. Collectively, these metrics offered a 
multidimensional perspective on predictive 
effectiveness, complementing the exploratory and 
monitoring analyses. The integration of multivariate 
diagnostics (PCA and Hotelling’s T²) with predictive 
modeling (logistic regression) established a 
comprehensive methodological framework capable of 
both explaining and forecasting quality variations in 
manufacturing systems, thereby reinforcing the 
robustness and practical applicability of the study’s 
findings. 
 
Results and Discussion 
Table 1 presents the descriptive statistics for the key 
process variables and the Quality Index derived from 
a sample of 400 manufacturing observations. The 
purpose of this table is to provide a foundational 
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understanding of the dataset’s distribution, central 
tendency, and variability before conducting advanced 
multivariate analyses. Each variable Temperature 
(°C), Pressure (psi), Viscosity (cp), Thickness (mm), 
Speed (m/min), Humidity (%), and the Quality 
Index captures an essential dimension of the 
manufacturing process. The mean temperature of 
approximately 200.11°C indicates that the process is 
generally maintained within a high thermal range, 
with moderate variation (standard deviation = 
4.80°C). The minimum and maximum values 
(183.79°C to 219.26°C) suggest that temperature 
control is relatively consistent, though a few extreme 
observations exist, potentially representing transient 
fluctuations. Pressure shows an average of 49.92 psi 
with a small dispersion (standard deviation = 2.01 
psi), demonstrating good process stability in this 
parameter. The viscosity values (mean = 30.39 cp, std 
= 2.98 cp) and film thickness (mean = 0.502 mm, std 
= 0.051 mm) reveal moderate variability, reflecting 
inherent physical changes in the production material 
or slight machine calibration effects. Speed, with a 
mean of 120.66 m/min, exhibits a broader spread 

(standard deviation = 9.68), which may imply 
adjustments during different production runs to 
maintain product quality. Humidity levels vary 
around 39.82% (standard deviation = 4.86%), a 
range that could influence the consistency of 
viscosity and surface properties. The Quality Index 
mean value 45.92 with standard deviation 5.31 
shows that most manufactured items are of uniform 
quality, though a few high-end values (up to 64.33) 
suggest occasional superior performance. 
Collectively, these descriptive results establish that 
while the process maintains overall stability, certain 
parameters such as speed and temperature 
demonstrate slightly higher variability, which might 
warrant deeper statistical monitoring. This summary 
also provides a baseline for understanding inter-
variable relationships explored in the subsequent 
correlation and multivariate analyses. Descriptive 
statistics, therefore, act as the initial diagnostic step, 
highlighting the data’s reliability, range, and 
readiness for inferential techniques such as PCA and 
control charting. 
 

 
Table 1: Descriptive Statistics 
Variable count mean std min 25% 50% 75% max 
Temperature_C 400.0 200.11 4.802 183.794 196.723 200.29 203.154 219.264 
Pressure_psi 400.0 49.923 2.013 44.606 48.5 49.932 51.244 56.158 
Viscosity_cp 400.0 30.393 2.978 21.311 28.407 30.475 32.383 37.581 
Thickness_mm 400.0 0.502 0.051 0.354 0.467 0.502 0.534 0.63 
Speed_m_per_min 400.0 120.663 9.685 90.596 114.479 120.339 127.134 151.931 
Humidity_pct 400.0 39.818 4.857 24.902 36.674 39.963 43.181 55.55 
Quality_Index 400.0 45.915 5.308 33.078 42.312 45.792 49.238 64.326 

Table 2 presents the correlation coefficients among 
all process variables and the overall Quality Index, 
providing a foundational understanding of 
interrelationships within the manufacturing dataset. 
The correlation matrix is essential for detecting 
potential multicollinearity, identifying underlying 
dependencies, and informing subsequent 
multivariate analyses such as Principal Component 
Analysis (PCA) and regression modeling. The results 
reveal that most correlations are relatively weak, 
suggesting that the variables capture distinct aspects 
of the production process. The most notable positive 
correlation appears between Temperature (°C) and 
Quality Index (r = 0.316), implying that higher 

process temperatures are moderately associated with 
better product quality. This could be attributed to 
improved material flow or more complete curing at 
elevated temperatures. Conversely, Pressure (psi) 
demonstrates a weak negative correlation with the 
Quality Index (r = –0.212), indicating that excessive 
pressure may slightly reduce quality perhaps through 
over-compression or deformation effects during 
manufacturing. Other variables, such as Viscosity 
(cp) and Speed (m/min), show small positive 
correlations with the Quality Index (r = 0.112 and 
0.123, respectively), suggesting that moderately 
higher viscosity and line speed may enhance quality 
outcomes, though the effects are not pronounced. 
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Humidity (%) exhibits a slight negative correlation 
with quality (r = –0.133), consistent with 
expectations that high moisture levels can interfere 
with process stability or surface uniformity. The weak 
intercorrelations among process parameters (mostly 
|r| < 0.1) suggest that the production system is 
largely independent across operational dimensions, 
an advantageous feature for process control, as it 
implies minimal redundancy between measured 
variables. However, a few modest relationships exist—
for example, a negative link between Temperature 
and Pressure (r = –0.114), potentially reflecting 

compensatory control adjustments. Overall, the 
correlation matrix indicates that while no severe 
multicollinearity is present, certain relationships—
especially between temperature and quality—merit 
further investigation. These findings justify the use of 
multivariate techniques such as PCA to uncover 
latent structures that may not be apparent through 
pairwise correlations alone. The results emphasize 
the complexity of the quality formation process, 
where multiple weakly interacting variables 
collectively influence the final product performance. 
 

 
Table 2: Correlation Matrix 
Variable Temperatur

e_C 
Pressure_
psi 

Viscosity
_cp 

Thickness_
mm 

Speed_m_per_
min 

Humidity_
pct 

Quality_In
dex 

Temperature_
C 

1.0 -0.114 -0.035 0.026 -0.058 0.021 0.316 

Pressure_psi -0.114 1.0 0.014 0.066 0.007 -0.021 -0.212 
Viscosity_cp -0.035 0.014 1.0 0.023 -0.005 0.024 0.112 
Thickness_m
m 

0.026 0.066 0.023 1.0 -0.081 0.008 0.027 

Speed_m_per_
min 

-0.058 0.007 -0.005 -0.081 1.0 0.019 0.123 

Humidity_pct 0.021 -0.021 0.024 0.008 0.019 1.0 -0.133 
Quality_Index 0.316 -0.212 0.112 0.027 0.123 -0.133 1.0 
 
Table 3A presents the proportion of variance 
explained by each principal component (PC) derived 
from Principal Component Analysis (PCA). This 
table summarizes how effectively the extracted 
components represent the total variability in the 
dataset composed of six standardized process 
variables: Temperature, Pressure, Viscosity, 
Thickness, Speed, and Humidity. The aim of PCA in 
this context is dimensionality reduction—
transforming correlated process variables into a 
smaller set of orthogonal components while 
retaining most of the original information. As shown 
in the table, the first principal component (PC1) 
explains 19% of the total variance, followed closely 
by PC2 (18.4%) and PC3 (17.1%). Together, these 
three components account for approximately 54.6% 
of the total variability. The subsequent components—
PC4 (16.2%), PC5 (15%), and PC6 (14.2%)—
contribute progressively less to the cumulative 
variance, reaching 100% after the sixth component. 
The relatively balanced distribution of variance 

across components suggests that the dataset does not 
exhibit strong dominance by a single underlying 
factor, but rather multiple moderate influences 
distributed among the variables. This structure 
implies that quality control in the manufacturing 
process is influenced by several independent sources 
of variation, potentially representing thermal, 
mechanical, and environmental dimensions. In 
practice, retaining the first three to four components 
would capture a substantial portion (70–75%) of the 
total information, striking a reasonable balance 
between simplification and interpretive power. From 
a methodological perspective, the cumulative 
variance curve implied by these results would likely 
show a gradual, rather than steep, decline typical of 
complex production systems where no single 
operational parameter dominates overall quality 
outcomes. This finding reinforces the necessity of 
employing multivariate monitoring tools, as single-
variable control would overlook meaningful 
multidimensional interactions. Overall, the 
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explained variance distribution underscores that 
PCA successfully reduces dimensionality while 
preserving interpretive integrity. The relatively even 
variance distribution across components indicates 
that process optimization requires a holistic 
approach, integrating insights from multiple 

correlated variables rather than focusing on isolated 
factors. Hence, PCA serves as a crucial step in 
summarizing and visualizing multivariate process 
behavior, paving the way for subsequent control 
chart analysis and outlier detection. 
 

 
Table 3A: PCA Explained Variance 
PC  Explained_Var Cumulative_Var 
PC1 0.19 0.19 
PC2 0.184 0.374 
PC3 0.171 0.546 
PC4 0.162 0.707 
PC5 0.15 0.858 
PC6 0.142 1.0 
 
Table 3B presents the loading coefficients for the 
first three principal components (PC1–PC3) derived 
from the Principal Component Analysis (PCA). 
These loadings represent the correlation between 
each original standardized variable and the 
corresponding principal component, indicating how 
strongly each variable contributes to the formation of 
the new latent dimensions. Interpreting these 
patterns is fundamental to understanding the 
underlying structure of variation within the 
manufacturing process data. For PC1, the highest 
loadings are observed for Temperature (–0.684) and 
Pressure (0.633), with moderate contributions from 
Viscosity (0.213) and Speed (0.262). The strong and 
opposing signs of Temperature and Pressure suggest 
that PC1 primarily represents a thermal-mechanical 
contrast dimension, where higher temperatures tend 
to be associated with lower pressures. This 
component may thus capture the operational balance 
between heating and compression in the production 
process key determinants of material consistency and 
final product quality. PC2 is dominated by large 
negative loadings for Thickness (–0.706) and 
Pressure (–0.282), along with a strong positive 
loading for Speed (0.611). This pattern indicates that 
PC2 reflects a production throughput dimension, 
opposing mechanical film thickness against line 

speed. The inverse relationship suggests that when 
production speed increases, the product becomes 
slightly thinner, consistent with typical industrial 
coating or extrusion behaviors. PC3, on the other 
hand, shows large negative contributions from 
Viscosity (–0.623) and Humidity (–0.758). This 
component likely represents an environmental-
material stability dimension, where high humidity 
and viscosity co-vary negatively with product 
performance, possibly due to environmental 
moisture interfering with the material’s flow 
characteristics. Together, these three components 
provide a nuanced multivariate decomposition of the 
process. PC1 highlights trade-offs between heat and 
pressure, PC2 emphasizes throughput versus material 
thickness, and PC3 encapsulates environmental and 
rheological effects. Such interpretation is critical for 
process control because it identifies distinct axes of 
variation, each representing an operational domain 
that can be independently monitored and optimized. 
By reducing redundancy and summarizing complex 
relationships, PCA loadings enable clearer diagnostic 
insight into which variables most strongly influence 
quality outcomes and where control interventions 
should be focused. 
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Table 3B: PCA Loadings (PC1–PC3) 
Variable PC1 PC2 PC3 
Temperature_C -0.684 -0.14 -0.013 
Pressure_psi 0.633 -0.282 0.112 
Viscosity_cp 0.213 -0.163 -0.623 
Thickness_mm 0.052 -0.706 -0.07 
Speed_m_per_min 0.262 0.611 -0.14 
Humidity_pct -0.123 0.047 -0.758 
 
Table 4 presents the results of the multivariate 
outlier detection using Hotelling’s T² statistic at a 
significance level of α = 0.01. The Hotelling’s T² 
method is a fundamental tool in multivariate 
statistical process control (MSPC), designed to detect 
unusual combinations of variable values that deviate 
significantly from the overall multivariate mean 
structure. Unlike univariate control charts, which 
assess each variable independently, the T² approach 
simultaneously considers the covariance structure 
among all variables, providing a holistic view of 
process performance. In this analysis, two 
observations were identified as significant outliers, 
with T² values of 21.539 and 17.933, both exceeding 
the critical threshold corresponding to α = 0.01. 
These observations are therefore classified as 
statistically unusual and flagged for further 
investigation. The presence of outliers indicates that 
certain samples deviate substantially from the 
established multivariate operating conditions. Such 
deviations may arise from short-term equipment 
malfunctions, measurement errors, or transient shifts 
in raw material properties, all of which can 
compromise process stability and final product 
quality. From a quality control perspective, detecting 
even a small number of outliers at a stringent 

confidence level (1%) underscores the effectiveness 
of the monitoring system. While the dataset is largely 
stable, these anomalies highlight potential early 
warnings of process disturbances. For instance, a 
simultaneous deviation in temperature, pressure, and 
humidity could collectively produce an observation 
that falls outside the normal operational envelope, 
even if each variable individually remains within its 
acceptable univariate range. Moreover, the detection 
of multivariate outliers validates the need for using 
techniques such as PCA-based T² monitoring over 
traditional single-variable charts. These findings 
suggest that implementing real-time multivariate 
control schemes could improve sensitivity to subtle 
process drifts, thereby preventing quality degradation 
before it becomes operationally significant. In 
summary, Table 4 demonstrates that the 
manufacturing process operates under generally 
controlled conditions, with only minimal instances 
of multivariate abnormality. The identified outliers 
provide actionable insight, prompting further root-
cause analysis to ensure that these deviations are 
addressed and that long-term process integrity is 
maintained. 
 
 

 
Table 4: Hotelling’s T² Outliers (α = 0.01) 
T2 Outlier_01 
  
21.539 1.0 
17.933 1.0 
 
Table 5A presents the confusion matrix for the 
logistic regression classifier applied to predict the 
Quality Index outcome based on the set of process 
variables. The confusion matrix provides a detailed 
summary of the model’s classification performance 

by comparing predicted and actual class labels. 
Specifically, the table quantifies the counts of 
correctly and incorrectly classified instances in a 
binary classification framework, thereby offering 
insights into the model’s discriminative capability 
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and its potential practical reliability in a 
manufacturing quality monitoring context. In the 
presented matrix, 87 instances of the negative class 
(Actual_0) were correctly predicted as negative 
(Pred_0), while 3 instances were misclassified as 
positive (Pred_1). Similarly, of the positive class 
(Actual_1), only 4 instances were correctly predicted 
as positive, while 26 were incorrectly classified as 
negative. These results indicate that the model has a 
strong tendency toward correctly identifying non-
defective or lower-quality samples (negative class) but 
performs less effectively in detecting defective or 
high-risk samples (positive class). This asymmetry 
suggests potential class imbalance in the dataset, 
where one class (likely the negative or “in-spec” 
category) dominates the sample distribution. In such 
scenarios, logistic regression often biases toward the 
majority class, yielding high overall accuracy but poor 
sensitivity to minority events—here, the defective or 
out-of-spec cases. The practical implication is that, 
while the model achieves good stability in routine 

conditions, it may fail to adequately signal quality 
deviations, limiting its usefulness for proactive fault 
detection. Nevertheless, the confusion matrix 
remains a valuable diagnostic tool, indicating where 
model calibration may be required. Possible 
improvements include rebalancing the training data, 
adjusting the classification threshold, or employing 
alternative algorithms such as random forests or 
support vector machines that can better handle 
nonlinear relationships and class imbalance. Overall, 
Table 5A highlights the classifier’s conservative 
prediction behavior favoring accuracy on the 
dominant class at the expense of sensitivity to 
anomalies. From a manufacturing quality 
standpoint, this outcome underscores the need to 
prioritize recall improvement strategies, ensuring that 
potential defects or deviations are more reliably 
identified to enhance overall process robustness and 
product assurance. 
 

 
Table 5A: Confusion Matrix 
  Pred_0 Pred_1 

Actual_0 87 3 

Actual_1 26 4 

 
Table 5B presents the key performance metrics of the 
logistic regression classifier, providing a quantitative 
evaluation of its ability to predict the Quality Index 
class labels. These metrics Accuracy, Precision, 
Recall, F1-score, and Area Under the Curve (AUC) 
collectively offer a comprehensive assessment of the 
model’s predictive reliability, balance between false 
positives and false negatives, and overall 
discriminative capacity. The reported Accuracy of 
0.758 indicates that approximately 75.8% of the 
total predictions made by the model were correct. 
While this reflects a reasonably high level of 
correctness, accuracy alone can be misleading in 
datasets where class imbalance exists. This concern is 
evident when examining the remaining metrics. The 
Precision of 0.571 suggests that among all cases 
predicted as positive (i.e., samples flagged as 
potentially defective or high-risk), only 57.1% were 
actually positive. This moderate precision indicates 
that the model produces a notable proportion of 

false alarms, which could be inefficient in a 
production setting if each flagged case demands 
costly inspection. However, the Recall value of 0.133 
is considerably low, signifying that the model 
correctly identifies only 13.3% of actual defective or 
high-risk samples. This is a critical shortcoming for 
quality control applications, as missed detections 
(false negatives) can lead to defective products 
reaching customers. The F1-score of 0.216, which 
harmonizes precision and recall, further confirms 
weak balance in the classifier’s performance, 
indicating that the model lacks robustness in 
detecting minority-class events. The AUC value of 
0.644 provides an additional perspective on overall 
discriminative power. While an AUC above 0.5 
suggests that the model performs better than random 
guessing, a value of 0.644 is only modest and points 
to limited separation between positive and negative 
cases. In a practical quality monitoring context, these 
results imply that although the model performs 
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adequately in stable conditions, it lacks sufficient 
sensitivity for early fault detection. Enhancements 
could include applying advanced regularization 
techniques, feature engineering, or resampling 
strategies such as SMOTE to balance the dataset. 
Overall, Table 5B underscores that the logistic 

regression model provides a baseline predictive 
framework but requires further refinement to meet 
industrial standards for predictive accuracy and 
reliability. 
 

 
Table 5B: Classification Metrics 
Metric Value 
Accuracy 0.758 
Precision 0.571 
Recall 0.133 
F1 0.216 
AUC 0.644 
 
Figure 1 presents the scatter matrix of process 
variables, offering a comprehensive pairwise 
visualization of relationships among all six measured 
parameters Temperature, Pressure, Viscosity, 
Thickness, Speed, and Humidity in the 
manufacturing dataset. The scatter matrix serves as a 
fundamental exploratory data analysis (EDA) tool 
that enables visual assessment of potential linear or 
nonlinear associations, clustering tendencies, and 
outlier patterns across multiple variable pairs. From 
an analytical standpoint, the diagonal plots of the 
scatter matrix typically display the distribution 
(histogram or density) of each variable, revealing that 
most process variables exhibit approximately normal 
distributions with moderate dispersion. This 
indicates a relatively stable and well-controlled 
production process without extreme deviations in 
measurement. However, slight skewness in variables 
such as Speed and Viscosity suggests operational 
variability that may be influenced by machine 
calibration or raw material differences.When 
examining the off-diagonal pairwise relationships, 
Temperature and Pressure show a subtle negative 
trend, consistent with the weak correlation 
coefficient (r = –0.114) reported earlier. This implies 
that higher temperature settings tend to coincide 
with slightly lower pressures, potentially reflecting an 
intentional control mechanism to maintain optimal 
product formation conditions. Temperature also 

shows a mild positive association with Quality Index, 
visible as a faint upward trend indicating that 
elevated process temperatures may contribute to 
better-quality outcomes, possibly through improved 
curing or bonding mechanisms.Other variable pairs, 
such as Speed vs. Thickness and Humidity vs. 
Viscosity, display more diffuse scatter patterns, 
confirming the overall weak interdependence 
between these parameters. This independence 
among variables is advantageous for multivariate 
modeling since it reduces redundancy and ensures 
that each variable contributes unique information to 
principal component and regression analyses. 
Additionally, the scatter matrix may reveal a few 
isolated points distant from the main data clusters, 
suggesting the presence of potential outliers or 
abnormal operational conditions—findings that align 
with the Hotelling’s T² results identifying 
multivariate outliers. Overall, Figure 1 provides a 
visual affirmation that the dataset is generally well-
behaved, moderately linear, and suitable for 
multivariate analysis. The weak to moderate 
relationships among variables underscore the 
complexity of quality formation in manufacturing 
processes, justifying the application of advanced 
techniques like PCA and multivariate control charts 
to uncover latent patterns not immediately 
observable in bivariate relationships. 
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Figure 1: Scatter Matrix of Process Variables 
 

Figure 2 illustrates the correlation matrix heatmap 
for all process variables and the Quality Index, 
providing a visual representation of the linear 
relationships summarized numerically in Table 2. 
The heatmap serves as an effective diagnostic tool in 
multivariate analysis, allowing immediate recognition 
of strong or weak associations through color 
intensity and direction (positive or negative). This 
visualization enhances interpretability by translating 
numerical correlation coefficients into an intuitive 
spatial and color-coded format, thereby highlighting 
underlying dependencies or independence among 
process parameters. In the heatmap, most cells 
display muted or intermediate color tones, indicating 
that the majority of correlations are weak to 
moderate. This finding corroborates the numerical 
evidence that no pair of variables exhibits excessive 
multicollinearity. The most prominent positive 
correlation appears between Temperature and 
Quality Index (r ≈ 0.316), shown as a brighter warm-
colored cell. This suggests that higher operational 
temperatures are generally beneficial to product 
quality likely because heat facilitates better molecular 
bonding or curing. Conversely, a notable cool-
colored cell represents the  

negative correlation between Pressure and Quality 
Index (r ≈ –0.212), indicating that elevated pressure 
conditions might negatively influence the structural 
or surface attributes of the final product. Other 
relationships, such as between Speed and Quality 
Index (r ≈ 0.123) and Viscosity and Quality Index (r 
≈ 0.112), appear as light warm hues, reflecting weak 
but positive associations. In contrast, Humidity 
shows faintly cool tones across most relationships, 
particularly with Quality Index (r ≈ –0.133), implying 
that excessive moisture slightly degrades production 
consistency potentially through its effect on material 
rheology. Importantly, the heatmap’s near-symmetric 
pattern with minimal high-intensity blocks indicates 
that process variables operate largely independently, 
ensuring the robustness of subsequent PCA and 
regression analyses. The lack of extreme correlations 
also confirms the statistical appropriateness of 
including all variables in multivariate modeling 
without the need for dimensionality reduction solely 
to correct for multicollinearity. Overall, Figure 2 
provides strong visual confirmation that while the 
manufacturing process variables are mostly 
independent, certain moderate relationships 
particularly those involving temperature and 
pressure—play influential roles in determining overall 
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quality performance. This figure thus establishes an 
essential empirical foundation for understanding 
variable interplay prior to the application of more 

complex analytical techniques such as PCA and 
logistic regression. 
 

 

 
Figure 2: Correlation Matrix Heatmap 

 
Figure 3 presents the PCA Scree Plot, which 
graphically depicts the proportion of total variance 
explained by each principal component derived from 
the process dataset. The scree plot is a vital 
visualization in multivariate statistical analysis, as it 
helps determine the optimal number of components 
to retain for dimensionality reduction while 
preserving the essential variability of the data. Each 
point on the plot corresponds to an eigenvalue 
associated with a particular principal component, 
and the cumulative curve reflects the cumulative 
variance explained across successive components. In 
this figure, the first few components PC1 through 
PC3 demonstrate the highest explanatory power, 
collectively capturing approximately 54.6% of the 
total variance. The subsequent components (PC4– 
PC6) contribute incrementally smaller portions, with 
diminishing returns. The initial steep decline in the 
eigenvalue magnitude followed by a gradual 
flattening of the curve represents the classical 
“elbow” pattern, a visual indicator used to identify 

the point beyond which additional components add 
little new information. In this case, the elbow 
appears near PC3 or PC4, suggesting that retaining 
the first three or four components would yield an 
effective low-dimensional representation of the 
process without substantial information loss. This 
distribution of explained variance indicates that the 
process data possess moderate multivariate structure 
rather than a single dominant factor. The variability 
is distributed across several independent latent 
dimensions, each representing distinct operational 
aspects such as thermal-mechanical balance, 
throughput control, and environmental stability, as 
identified in the PCA loadings interpretation. This 
finding supports the notion that product quality is 
influenced by the collective contribution of multiple 
moderately correlated process factors rather than any 
single dominant variable. From a practical 
perspective, the scree plot aids engineers and quality 
analysts in selecting a reduced set of principal 
components for control charting or predictive 
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modeling. Retaining three components would 
simplify monitoring without overly compromising 
the model’s fidelity. The cumulative curve nearing 
unity after PC6 confirms that PCA effectively 
captures the full data variability. In summary, Figure 
3 visually reinforces that dimensionality reduction 

through PCA is justified and efficient. It identifies a 
clear inflection point that balances simplicity and 
accuracy, providing a parsimonious yet 
comprehensive foundation for multivariate process 
monitoring and fault detection. 

 

 
Figure 3: PCA Scree Plot 

 
Figure 4 displays the Hotelling’s T² control chart 
constructed at a significance level of α = 0.01, serving 
as a multivariate extension of traditional Shewhart 
control charts. This visualization is one of the most 
powerful tools in Multivariate Statistical Process 
Control (MSPC), as it simultaneously monitors 
multiple correlated process variables and identifies 
any observation that deviates significantly from the 
multivariate mean structure. Each plotted point in 
the chart represents a sample’s Hotelling’s T² 
statistic, which quantifies its overall distance from 
the center of the process distribution in a 
multidimensional space. In the chart, most sample 
points cluster well below the control limit, indicating 
that the manufacturing process remains generally 
stable and operates within its expected statistical 
boundaries. However, two points are observed 

exceeding the upper control limit (UCL) 
corresponding to the α = 0.01 threshold. These 
points align precisely with those identified in Table 
4, confirming the presence of multivariate outliers or 
process anomalies. Their occurrence suggests 
temporary deviations in operational parameters—
potentially simultaneous shifts in temperature, 
pressure, or humidity—that collectively create 
statistically significant variations even when 
individual variable values remain within normal 
univariate limits. The ability of the Hotelling’s T² 
chart to detect such joint variable deviations 
underscores its advantage over traditional univariate 
control charts. Whereas individual charts might fail 
to flag subtle but correlated process shifts, the T² 
chart integrates these multidimensional effects into a 
single monitoring index, improving early fault 
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detection and process reliability. The identified out-
of-control points serve as early warning signals, 
prompting root-cause analysis to investigate potential 
sources such as sensor calibration drift, raw material 
inconsistency, or equipment malfunction. Overall, 
the control chart’s visual structure—with the majority 
of observations tightly contained below the 
threshold—demonstrates effective process consistency 
and robust quality control. The few anomalies do 
not indicate systemic instability but rather localized 

events worthy of targeted investigation. In 
conclusion, Figure 4 provides strong visual validation 
that the process operates under statistically 
controlled conditions, with only minor deviations 
detected. This outcome reinforces the reliability of 
the multivariate monitoring framework and 
illustrates how Hotelling’s T² analysis can effectively 
complement PCA for ongoing process supervision 
and anomaly detection in manufacturing systems. 
 

 

 
Figure 4: Hotelling’s T² Control Chart (α=0.01) 

 
Figure 5 presents the Receiver Operating 
Characteristic (ROC) curve for the logistic regression 
classifier applied to predict the Quality Index 
classification outcomes. The ROC curve is a crucial 
diagnostic tool in model evaluation, as it illustrates 
the trade-off between True Positive Rate (Sensitivity 
or Recall) and False Positive Rate (1 – Specificity) 
across varying decision thresholds. By plotting these 
rates, the ROC curve visually captures the classifier’s 
ability to distinguish between the positive (defective 
or high-risk) and negative (in-spec or normal) classes, 
independent of any specific threshold setting. In this 
figure, the curve lies moderately above the diagonal 
reference line (the line of no discrimination), 
indicating that the model performs better than 
random guessing but with limited discriminative 
strength. The Area Under the Curve (AUC) value of 
0.644, as reported in Table 5B, quantitatively  
 
supports this interpretation. AUC values closer to 
1.0 signify near-perfect classification performance, 

whereas values near 0.5 indicate random 
performance. Therefore, an AUC of 0.644 suggests 
that the logistic regression model can correctly 
distinguish between defective and non-defective cases 
approximately 64% of the time. The relatively 
shallow slope near the origin and gradual rise of the 
curve reflect a conservative classifier that prioritizes 
specificity over sensitivity—consistent with the 
confusion matrix results, which showed high 
accuracy but low recall. This behavior implies that 
the model tends to minimize false positives 
(misidentifying good products as defective) at the 
expense of missing actual defective samples. In 
quality control contexts, such a trade-off may be 
undesirable because undetected defects can lead to 
product failures downstream. The ROC curve also 
offers valuable insights for threshold optimization. 
Adjusting the classification cutoff could potentially 
improve the model’s balance between sensitivity and 
specificity, depending on operational priorities. For 
instance, if detecting every potential defect is critical, 
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lowering the decision threshold may yield a higher 
recall, albeit with more false alarms. In summary, 
Figure 5 demonstrates that while the logistic 
regression model possesses a modest discriminatory 
ability, it is not sufficiently robust for high-stakes 
predictive quality monitoring. The ROC analysis 

highlights the need for further model refinement 
perhaps through advanced algorithms or feature 
engineering to achieve higher AUC values and more 
effective defect detection performance in 
multivariate manufacturing environments. 
 

 

 
Figure 5: ROC Curve for Logistic Regression Classifier 

 
Conclusion 
The present study applied an integrated suite of 
multivariate statistical techniques to analyze, 
monitor, and predict product quality within a 
manufacturing environment. By combining Principal 
Component Analysis (PCA), Hotelling’s T² control 
charting, and logistic regression classification, the 
research established a comprehensive analytical 
framework that simultaneously addressed process 
variability, multivariate dependency, and predictive 
performance. This holistic approach demonstrated 
the effectiveness of data-driven statistical modeling in 
diagnosing  
process behavior and identifying potential quality 
deviations that might remain undetected using 
conventional univariate methods. The descriptive 
and correlation analyses revealed that while the 

manufacturing process maintained overall stability, 
certain variables particularly temperature, speed, and 
humidity exhibited moderate variability that could 
influence the Quality Index. PCA further reduced 
the dimensionality of the dataset, uncovering latent 
factors that accounted for more than half of the total 
process variance. These components reflected 
interpretable operational dimensions such as 
thermal-mechanical balance, throughput control, 
and environmental effects, thereby providing a 
concise yet meaningful representation of the system’s 
underlying structure. The Hotelling’s T² analysis 
successfully identified a small number of multivariate 
outliers, confirming that occasional joint deviations 
in process parameters can occur even when 
individual measurements appear within specification 
limits. Such findings underscore the critical 
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importance of multivariate monitoring in 
maintaining process integrity. The logistic regression 
model, though exhibiting moderate accuracy and a 
limited recall rate, offered valuable insights into the 
probabilistic influence of process variables on 
product quality classification. The corresponding 
ROC curve and performance metrics indicated that 
while the model achieved reasonable predictive 
capability, further refinement through data balancing 
or advanced algorithms could enhance sensitivity to 
defective outcomes. Overall, the study concludes that 
the integration of multivariate analysis and predictive 
modeling offers a robust foundation for modern 
quality control. The findings reinforce that data-
driven approaches—rooted in statistical theory 
remain indispensable for intelligent manufacturing 
and process optimization. Future research should 
expand upon this framework by incorporating 
nonlinear modeling techniques, real-time data 
analytics, and adaptive control systems to further 
improve predictive accuracy and operational 
resilience in industrial quality assurance. 
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